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Carrier Screening
A brief literature overview of Coulomb-potential 
screening by free charge carriers.
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Screening of Coulomb potentials by free carriers or 
bound charges is a ubiquitous phenomenon that oc-
curs in all manner of materials ranging from insu-

lators to metals. Of particular interest is the screening of 
potentials by mobile carriers in semiconductors and the 
results that this action has on the behavior of semicon-
ducting materials.

In insulators (dielectric materials), the screening of 
a potential involves polarization of the surrounding ma-
terial. This polarization is, in effect, a displacement of 
the centroids of positive and negative charge in the at-
oms or molecules, resulting in the creation of numerous 
nearly infinitesimal dipoles [1]. Although the functional 
dependence of the potential is unchanged, the dielectric 
constant increases, reducing the potential φ.

� (1)

As (1) shows, when the dielectric constant ε is greater 
than ε0, the potential decreases with respect to the free-
space potential.

A much more dramatic and relevant form of screening 
occurs in the presence of mobile carriers, which are abun-
dant in conductors (metals). Free (or nearly free) carriers 
in the metal will ideally arrange themselves to maintain a 
constant potential throughout. Any variation in the poten-
tial will cause the carriers to reorient. This phenomenon 
leads to effective screening of any Coulomb potential in 
the metal to within approximately the interatomic dis-
tance. Beyond simply changing a multiplicative factor as 
in the case of dielectrics, the functional dependence of a 
screened potential in a metal is drastically altered. (It can 
be modeled to some degree of accuracy as an exponen-
tial, as this discussion will show later.)

Between these two extremes of conductors and di-
electrics are semiconducting materials. Semiconductors 

typically have some concentration of mobile charge car-
riers available for screening, and they can be expected 
to behave similarly to metals, albeit to a limited extent. 
Although screening by mobile carriers is the dominant 
factor in this problem, dielectric screening does also take 
place in semiconductors and cannot be ignored.

Qualitative Description of Screening

In a perfect crystal, electrons in a particular state indexed 
by the wave vector k are not scattered by the atoms (po-
tentials in the lattice) [2]. Effectively, then, the ideal crys-
tal acts as a uniform (or zero) potential with regard to 
electron behavior. On the other hand, impurities or de-
fects produce potential fluctuations that can scatter elec-
trons. Since these defects alter the behavior of the semi-
conductor, including its optical and electrical properties, 
determining the nature of the potential and, specifically 
in this case, how the mobile carriers are involved is im-
portant.

Qualitatively, a potential caused by a defect can be 
viewed as a perturbation of the energy-band diagram with 
respect to a spatial coordinate, as Figure 1 shows. The 
dip in the energy band depicted in this figure creates new 
lower energy states near the impurity. As a result, when 
free electrons are abundant, they will move to achieve a 
more preferred lower-energy state by “filling” this dip in 
the conduction band. Figure 2 shows the filling effect. 
The rearrangement of carriers in this scenario leads to 
the presence of an excess density above the uniform con-
centration, balancing the potential to some extent. When 
few mobile carriers are present, the screening is less pro-
nounced [3].

This description applies to a positively charged impu-
rity, where electrons screen the potential; the same action 
can occur around a negatively charged impurity, howev-
er. Holes will fill the “bump” in the band, screening the 
negative potential in the same way that electrons screen 
the positive potential. In a doped semiconductor, then, the 
band structure should not be a series of smooth curves, 
but will instead comprise moderately rough curves, in-
dicating the presence of (screened) potentials owing to 
defects in the lattice. Figure 3 illustrates this situation ap-
proximately.
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Figure 1. A perturbation of the energy band in direct 
space owing to the presence of an ionized impurity with 
electrical potential ψ(r). (Image from [2].)

Figure 2. Movement of mobile carriers to fill the “dip” 
and screen the impurity potential. (Image from [3].)

Figure 3. Variations in the energy band due to the pres-
ence of impurities or defects. (Image from [4].)

Thomas-Fermi Model

Quantitatively, one simple approach to screening uses the 
Thomas-Fermi model of an electron “gas.” This  semi-
classical approach solves both the Schrödinger and Pois-
son equations. An original application of this model was 
metals [5], but it also applies roughly to semiconductors. 
The model requires a significant number of carriers in the 
conduction band (since the screening electrons are con-
sidered “free”) and therefore a Fermi energy higher than 
the bottom of the conduction band, as Figure 4 depicts. 
This situation implies that the semiconductor is degener-
ate, and the results must be considered in this light.

The approach first requires derivation of the Fer-
mi energy of the free-electron gas in terms of useful or 
known parameters [7]; this derivation uses the solution 
to the Schrödinger equation for a single free electron in 
three dimensions.

� (2)

The solution to this Schrödinger equation for the case 
of confinement to a cube of edge length L is the typical 
solution for an infinite potential well in three dimensions. 
If a periodic boundary condition is placed on the solution 
such that ψk(r) has a period L in all three dimensions, 
then the solution becomes the following:

� (3)

where V is the volume of the cube (L3). This plane-wave 
solution restricts the allowed components of the wave 
vector k, being kx, ky and kz, to

					         � (4)

The use of the quantum-mechanical momentum oper-
ator allows expression of the Fermi energy EF in terms of 
a Fermi wave vector kF .

� (5)

If a certain sphere in k-space contains all the ground-
state free electrons, then kF can be calculated by noting 
that the total number of free electrons, N, is the volume 
of the sphere multiplied by the number of states per vol-
ume element. Equation (4) requires that each volume el-
ement (2π/L)3 in k-space contain only one state. Taking 
into account spin degeneracy, which doubles the number 
of states, the following equation applies:

� (6)

Here, V is simply L3. Equation (6) can also be expressed 
in terms of the electron density, n, by dividing both sides 
by V, where n is N/V. Combining (5) and (6) yields the 
Fermi energy as a function of the electron density n.

� (7)

If the Coulomb potential φ from an impurity in a 
semiconductor is a perturbation of the Fermi energy in 
(7), then the direct-space expression is

� (8)

In this case, eφ(r) is the potential energy of the impurity and 
n(r) the total carrier concentration. Replacing the EF term in
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Figure 4. Perturbation of the energy band by impurities 
which are significantly screened by the presence of mo-
bile carriers in a degenerate semiconductor. (Image from 
[6].)

(8) with the unperturbed carrier density n0, the Poisson 
equation for the total potential at r is the following:

� (9)

In (9), n(r) takes account of the positive charge per-
turbation. Solving (8) for n(r) and substituting the result 
into (9) reveals that the differential equation is nonlin-
ear. Nonlinear-screening theory is important, but a gen-
eral solution to the equation does not exist [6]. Acquiring 
a simplified result necessitates linearization of n(r) us-
ing the binomial expansion and taking only the first two 
terms.

�
�
� (10)

The linearization in (10) enables a solution to (9) un-
der the assumption that the potential φ(r) is spherically 
symmetric. 

� (11)

The solution to this Poisson equation is the screened po-
tential, φ(r).

� (12)

Here, Ze is the charge of the impurity (as an integer mul-
tiple Z of the electronic charge e), and rs is the Thom-
as-Fermi screening radius:

� (13)

In reality, the electron mass m must be the effective 
mass m* [6]. Although this expression is the result for 

degenerate semiconductors, nondegenerate semiconduc-
tors warrant a similar analysis. In this case, the screened 
potential in (12) is still be the result, but the screening 
length is slightly different.

� (14)

This is the Debye screening radius. 
In the degenerate case, the screening radius has no 

temperature dependence, but it does depend very weakly 
on the carrier concentration. In the nondegenerate case, 
the Debye screening radius does in fact depend on tem-
perature, while also showing a much stronger dependence 
on carrier concentration compared with the Thomas-Fer-
mi radius. 

Figure 5 shows a general comparison of a bare and 
screened potential. This figure illustrates that for small 
values of r (less than the screening length), the two po-
tentials are very nearly the same. Beyond the screening 
length, however, the screened potential deviates from the 
bare potential in a pronounced manner. This phenome-
non occurs because as the radial distance becomes sig-
nificantly less than the screening length, the exponential 
becomes nearly unity.

These results show a quantitative, first-order approx-
imation of the characteristics of a screened potential in 
a semiconductor. Given that these results come from a 
linearized version of the problem, it is assumed that the 
potential is slowly varying. For large variations, such as 
in the case of a Schottky barrier, non-linear analysis of 
the screening must be used [6], since (10) is no longer a 
valid approximation.

Impurity Ionization and Critical Concentration

An impurity, with its corresponding potential, can form 
a hydrogen-like structure when it interacts with a mobile

Figure 5. A comparison of the screened (blue) and un-
screened (red) Coulomb potentials for a screening length 
of 0.25.
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carrier. In this “hydrogenic” model, the ionization energy 
associated with, for example, an electron bound to a posi-
tively charged donor atom becomes important. Given the 
fact that the screened potential discussed above is much 
weaker than the bare potential, the ionization energy of 
the impurity should be lower. Thus, a donor level is clos-
er to the conduction band, and an acceptor level is clos-
er to the valence band, as Figure 6 illustrates. (Although 
most of this discussion cites the case of a positive charge 
screened by free electrons, a negative charge, such as an 
acceptor atom, screened by free holes is a perfectly legit-
imate scenario as well. Figure 6 also depicts the decrease 
in ionization energy for this case)

Figure 6. Qualitative donor and acceptor energy lev-
els for bare potentials (a) and screened potentials (b). 

As the figure suggests, a smaller ionization ener-
gy will tend to result in a higher mobile-carrier density, 
which in turn will make these carriers available to further 
screen the potential. This situation leads to an even lower 
ionization energy, suggesting that at some point the donor 
levels actually reach the conduction band. This is indeed 
the case, as the following empirical relation shows [3]:

� (15)

Here, Ed0 is the donor energy level for low doping, and 
Ncrit is the critical doping concentration for the ionization 
energy to reach zero. For arsenic-doped germanium, Ncrit 
is on the order of 1017 cm-3 [3]. This formulation is es-
sentially a description of the Mott, or insulator-to-metal, 
transition [6]. As the doping concentration Nd increases 
and the ionization energy of the donors approaches zero, 
the semiconductor begins to take on the characteristics of 
a metal.

Two-Dimensional, Quasi-Two-Dimensional and Non-
linear Screening

The preceding discussion has focused primarily on im-
purities or defects located well within the semiconductor 

and has lent itself to a three-dimensional analysis. Also 
of interest are cases with a two-dimensional geometry. 
Two-dimensional analysis yields results for screened 
potentials significantly different from those of three-di-
mensional analysis. In the limit of large distances from 
the impurity (much greater than the screening length) in 
the two-dimensional case, the potential falls off as the in-
verse of the distance cubed [8]. This decay is much weak-
er than in the three-dimensional case, where the fall-off 
is exponential.

Typically, the ideal two-dimensional analysis is inap-
propriate for phenomena that occur in a three-dimension-
al world, so quasi-two-dimensional analysis can be more 
useful. It is a more complicated approach that considers 
a layer with finite thickness instead of an infinitesimally 
thin plane [8].

Quasi-two-dimensional analysis becomes useful in 
the case of inversion layers in semiconductor devices. In-
version layers are nearly two-dimensional sheets of mo-
bile carriers, and potentials located therein must be treated 
differently than potentials in an equilibrium semiconduc-
tor. Furthermore, research has found that the linearization 
approach of the Thomas-Fermi method discussed above 
fails to accurately predict the screening of potentials in 
an inversion layer [9]. As a result, the approximation in 
(10) must be invalid, just as in the briefly mentioned case 
of a Schottky barrier, since the electron density varies too 
quickly with the potential (and vice versa).

Figure 7. A potential perturbation of charge q at the sur-
face of a semiconductor. (Image from [10].)

Impurities on the surface of a semiconductor cannot 
be accurately modeled using the assumption of spherical 
symmetry for obvious reasons. Owing to the geometry of 
the problem, as Figure 7 shows, the analysis has a degree 
of two-dimensionality due to the surface, but it cannot be 
wholly understood except in three dimensions. Research 
has shown that the radial dependence of a screened po-
tential on the surface, when linear-screening theory is in-
voked, is far more complex than the simpler case of a po-
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tential immersed in the semiconductor [10]. This research 
determined that the screened potential behaves similarly 
to (12) within several multiples of the screening distance. 
Far beyond this, however, it has 1/ρ3 dependence.

Also of interest are Coulomb potentials in quantum 
wells; Figure 8 shows several examples. Semiconductor 
quantum wells can be modeled as quasi-two-dimensional 
structures when the width of the well is small. In such 
cases, electrons with energies lower than the potential 
barriers on either side are confined to the well and are 
available to screen the Coulomb potentials that may be 
present because of an impurity in the well, for example.

Figure 8. Quantum wells for the case of undoped semi-
conductors (a) and so-called modulation-doped semicon-
ductors (b), where Vb is the barrier height. (Image from 
[11].)

Conclusion

This discussion has reviewed some of the basic concepts 
of Coulomb-potential screening by free carriers. The 
Thomas-Fermi model is an acceptable basis for a simple 
semiclassical approach to this problem. To obtain a solu-
tion without resorting to extremely complicated analysis, 
a linearization of the electron concentration with respect 
to potential energy is helpful. The derivation showed that 
the screened potential, on these assumptions, behaves 
exponentially beyond the screening radius, a length that 
varies in form depending on whether the semiconductor 
is degenerate or nondegenerate.

As an effect of screening, the ionization energy of a 
hydrogenic impurity is less than that of the corresponding 
unscreened impurity. This result led to a process whereby 
the free-carrier density increased as the ionization energy 
decreased (and doping increased), which in turn caused 

greater screening and an even lower ionization energy. 
This cycle reaches a critical point at which the impuri-
ty bands merge with the conduction band: the so-called 
Mott transition.

The cases of (quasi-)two-dimensional and nonlinear 
screening applied to quantum wells, inversion layers and 
Schottky barriers are more complicated. The mathemat-
ics in these cases becomes significantly more obtuse than 
the simpler approaches discussed above, but it is note-
worthy nevertheless, as many real problems require a 
more rigorous approach.

Although all the specific mechanisms are beyond the 
scope of this discussion, the fact that impurities and other 
defects, especially charged ones, serve as scattering cen-
ters for electrons and holes in the semiconductor implies 
that screening is phenomenon critical to understanding 
the electrical and optical properties of the material. A rig-
orous mathematical approach to screening is highly com-
plicated, but a basic understanding of the concepts nec-
essary to this analysis, as well as some of the peripheral 
issues, is generally more accessible.
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